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Abstract. We investigate the intersection of two finitely generated
submonoids of the free monoid on a finite alphabet. To this end, we
consider automata that recognize such submonoids and we study the
product automata recognizing their intersection. We start by proving a
result of Karhumaki on the characterization of the intersection of two
submonoids of rank two, in the case of prefix (or suffix) generators.
In a more general setting, for an arbitrary number of generators, we
prove that if H and K are two finitely generated submonoids generated
by prefix sets such that the product automaton associated to H ∩ K

has a given special property then frk(H ∩ K) ≤ frk(H) ·frk(K) where
frk(L) = max(0, rk(L)− 1) for any free submonoid L.

The starting motivation of this paper was to study the intersection of
two submonoids generated by two elements of the free monoid over a finite
alphabet A.

Given a finite alphabet A, let A∗ be the free monoid on A. The intersec-
tion of two submonoids of the free monoid A∗ was first studied by Tilson
([7]) who proved that the intersection of two free submonoids of A∗ is still
free.

Karhumaki in 1984 ([4]) gave a characterization of the intersection of
two submonoids generated by two elements. He proved that given two sub-
monoids H and K of A∗, if both H and K are of rank two, then H ∩ K
is a monoid generated by at most two words or by a regular language of a
special form. In particular if H and K are generated by prefix (or suffix)
sets of two words, and H ∩K is not finitely generated, then this intersection
has the form (αβ∗γ)∗ where α, β, γ ∈ A∗.

In this paper, in particular, we prove the result of Karhumaki in the case
of two submonoids generated by prefix (or suffix) sets using a more intuitive
approach.

When dealing with the intersection of two submonoids of rank two it
is natural to refer to a more general problem in the theory of free groups
known as the ’Hanna Neumann conjecture’. This conjecture deals with the
problem of finding an upper bound of the rank of the intersection of two
finitely generated subgroups.

In 1956 Hanna Neumann ([5]) proved that if H and K are two subgroups
of finite rank then r̃k(H ∩ K) ≤ 2r̃k(H)r̃k(K) where for a free group T ,
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r̃k(T ) = max(rk(T ) − 1, 0) with rk(T ) the rank of T . Then she made the
following conjecture, known nowadays as the ’Hanna Neumann conjecture’:

r̃k(H ∩K) ≤ r̃k(H)r̃k(K)

In 1991 Walter Neumann ([6]) formulated a stronger conjecture known
as ’Strengthened Hanna Neumann conjecture’ (in short SHN) and in 2002
Meakin and Weil ([3]) proved that SHN holds for the class of positively
generated subgroups of the free group F (A) on A finite alphabet that are
generated by words in A∗. This last result suggested us to propose the
problem of Hanna Neumann for finitely generated submonoids of a free
monoid, in the case that their intersection is finitely generated.

Some of the basic tools in dealing with the Hanna Neumann conjecture for
free groups makes use of the representation of subgroups of the free group by
graphs (or automata). The same tools are still available when dealing with
the intersection of two submonoids of the free monoid. For this purpose we
refer to the well known correspondence (see [1]) between submonoids on the
free monoid on a finite alphabet A and automata on A.

Through the study of the product of two automata associated to two
finitely generated submonoids H and K, we were able to prove that if
H and K are submonoids generated by prefix sets such that the prod-
uct automaton associated to H ∩ K has a given special property then
r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

In the general case we have found a family of examples such that rk(H ∩
K) = 2log2(rk(H))log2(rk(K)). We conjecture that this is the worst case.

Moreover if the two submonoids H and K are generated by prefix (or
suffix) sets of two elements and if H ∩K is not finitely generated then this
intersection has the form (αβ∗γ)∗ where α, β, γ ∈ A∗, that is the result of
Karhumaki.

In the first part of the paper we describe briefly the correspondence be-
tween submonoids of the free monoid on a finite alphabet and the class of
automata with one final state equal to the initial one.

We treat with final states automata on a finite alphabet A. Let A be
an alphabet. An automaton over A A = (Q, I, T,F) consists of a finite
set Q of states, of two subsets I and T of Q called sets of initial and final
states, respectively, and of a set F ⊂ Q× A×Q whose elements are called
edges. A path in A is a finite sequence p = p1p2 . . . pn of consecutive edges
pi = (xi, ai, yi) (i.e. such that yi = xi+1 for 1 ≤ i ≤ n − 1). We say that a
path c is a cycle in x if it starts and ends at x. A cycle c in x is simple if it
is not the null path and if no interior state is equal to x.

We can think of A as a graph whose set of vertices is the set of states Q
and the set of labelled edges is F .

Given a graph we say that a vertex v is a branch point (in short bp) if
the degree of v (i.e. the number of edges incident to v) is greater than two.
We say that a vertex v is a branch point going out (in short bpo) if v is a
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branch point and if the number of edges going out is at least two and we say
that v is a branch point going in (in short bpi) if v is a branch point and if
the number of edges coming in is at least two.

An automaton A over A is a deterministic automaton if card(I) = 1 and
if for each state x and for each a ∈ A there is at most an edge starting in x
with label a.

Given an automaton A on a finite alphabet A, we say that it is trim if all
the states of the automaton are accessible and coaccessible. We say that A
is a monoidal automaton if it is a trim automaton with a unique final state
equal to the initial one.

By [1] we have that if A is a monoidal automaton on A recognizing H
submonoid of A∗, then H is free with basis the set of labels of the simple
cycles in the initial-final state 1 if and only ifA is an unambiguos automaton.

To each submonoid H generated by a finite set XH is associated FXH
the

flower automaton of XH . Such automaton is a monoidal automaton such
that all the cycles visit the initial-final state 1, intersect themselves only in
1 and the cycles in 1 that visit just twice 1 have as labels the words of XH .
We have L(FXH

)=H. Conversely to a monoidal automaton A is associated
the submonoid H = L(A) of A∗. We remark that the flower automaton
associated to a submonoid is not necessarily deterministic.

We say that A is a semi-flower automaton if it is a monoidal automaton
such that all the cycles visit the unique initial-final state 1. Hence in a semi-
flower automaton the cycles in the initial-final state 1 intersect themselves
not necessarily only in 1.

We have that ifA is an unambiguos monoidal automaton on A recognizing
H submonoid of A∗, then H is finitely generated if and only if A is a semi-
flower automaton.

We say that A is a strongly semi-flower automaton if it is a semi-flower
automaton such that there are not bpi different from 1.

In this setting we have the following results:

Theorem 1. If A is a strongly semi-flower automaton with v vertices and
e edges and H = L(A) then rk(H) ≤ e− v + 1.

And if we consider unambiguos automata we get the following:

Theorem 2. If A is an unambiguos strongly semi-flower automaton with v
vertices and e edges and H = L(A) then rk(H) = e− v + 1.

We remark that a similar result holds for free groups: if A is an in-
verse automaton with v vertices and e edges recognizing a subgroup H then
rk(H) = e− v + 1.

In the setting of a binary alphabet A2 the following holds: if A is a
deterministic trim automaton with non empty language and with v vertices
and e edges on A2 then e− v = ] bpo (i.e. e− v is the number of bpo).

Given a submonoid H generated by a prefix finite set we can associated to
it an automaton recognizing H in the following way. Let U = {u1, . . . , un} ⊆
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A∗ be a finite prefix set. Let P (U) be the set of the proper prefixes of ele-
ments of U together with ε, the empty word in A∗. Let AU = (Q, {ε}, {ε}, δ)
with Q = P (U) and for each u ∈ P (U) for each a ∈ A δ(u, a) = ua if ua /∈ U ,
δ(u, a) = ε if ua ∈ U .

It is proved the following proposition:

Proposition 3. Let U be a finite prefix set then AU is a deterministic
strongly semi-flower automaton.

If A is a deterministic strongly semi-flower automaton recognizing the
submonoid H = X∗ then X is a finite prefix set.

So we have that if H = X∗ then X is a finite prefix set if, and only if
there exists a strongly semi-flower automaton recognizing it.

From now on, given a submonoid H generated by a finite prefix set X,
let’s denote by AH the automaton AX as before associated to X.

Resuming all the precedent results we get in the setting of a binary al-
phabet the following theorem:

Theorem 4. If H is a submonoid of A2
∗ finitely generated by a prefix set,

then AH is a deterministic strongly semi-flower automaton and r̃k(H) =
] bpo.

This property of prefix codes allowed us to prove our result in the prefix
case.

In the second part of the paper we investigate the intersection of two
finitely generated submonoids of the free monoid on a binary alphabet A by
studying the product of two automata associated to them. All the results
obtained are then extended to an arbitrary finite alphabet.

Given A1 and A2 two monoidal automata their product is still monoidal
and recognizes L(A1) ∩ L(A2). Moreover it is well known that if A1 and
A2 are two deterministic automata then the product is still a deterministic
automaton. Instead the product of two trim automata is not necessarily
a trim automaton. Moreover we have that the product of two semi-flower
automata is not necessarily a semi-flower automaton and that the product
of two strongly semi-flower automata if it is a semi-flower automaton then
it is not necessarily a strongly semi-flower automaton.

Given H and K submonoids finitely generated by prefix sets, the cor-
responding AH and AK are deterministic monoidal automata, and so is
AH ×AK .

Let consider in AH×AK only the set of accessible and coaccessible states.
We have that H ∩ K is finitely generated if and only if AH × AK is a
semi-flower automaton. If AH ×AK is a deterministic strongly semi-flower
automaton then by studying the nature of the bpo in AH × AK we prove
the following
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Theorem 5. Let H and K be submonoids finitely generated by prefix sets
such that H ∩K is finitely generated. If AH ×AK is a strongly semi-flower
automaton then r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

If H and K are submonoids finitely generated by prefix sets such that
H ∩ K is finitely generated, if AH × AK is a semi-flower automaton not
strongly then it is not more true that r̃k(H ∩ K) ≤ r̃k(H)r̃k(K). In fact
there is a family of examples such that rk(H ∩K) = 2log2(rk(H))log2(rk(K)):

Example 6. Let p and q be two positive coprime integers. Let A be a binary
alphabet and let H = Ap and K = Aq (Ap is the set of words in A∗ of length
p). It is rk(H) = 2p and so p = log2(rk(H)). It is H ∩ K = Apq and
rk(H ∩K) = 2pq = 2log2(rk(H))log2(rk(K)).

We conjecture that this is the worst case.

If H and K are generated by prefix sets of two elements we get the result
of Karhumaki:

Theorem 7. If H and K are submonoids finitely generated by prefix (or
suffix) sets of two elements and H∩K is finitely generated then rk(H∩K) is
at most two. If H ∩K is not finitely generated then there exist α, β, γ ∈ A∗
such that H ∩K = (α(β)∗γ)∗.

The case when H and K are generated by suffix sets can be easily reduced
to the prefix case.
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rafi 34, 90123 Palermo, Italy

E-mail address: lgiambr@math.unipa.it

Dipartimento di Matematica e Applicazioni, Università di Palermo, Via Archi-
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